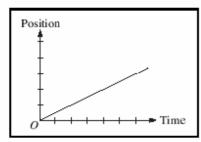
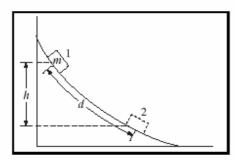

IX Olimpiadas grupales ORT Nº2 10 de Octubre de 2003


Problema 1

Cada respuesta correcta vale 1 punto. Si la respuesta es incorrecta se descuenta 0,20

- 1) Cuando un vector de magnitud 6 se suma a un vector de magnitud 8. la magnitud del vector resultante es:
 - a) exactamente 2 unidades
 - b) exactamente 10 unidades
 - c) exactamente 14 unidades
 - d) 0 unidades, 10 unidades o algún valor intermedio
 - e) 2 unidades, 14 unidades o algún valor intermedio
- 2) Un bloque de 5 kilos se suspende del techo con una cuerda como aparece en la figura. La fuerza ejercida en la cuerda es aproximadamente:



- a) 0 N
- b) 25 N
- c) 50 N
- d) 100 N
- e) 200 N
- 3) El grafico muestra la posición vs. Tiempo para un móvil moviéndose a lo largo de una línea recta. La velocidad y aceleración del móvil tienen las siguientes características

	Velocidad	Aceleración			
A	Creciente	Creciente			
В	Creciente	Constante pero no cero			
C	Constante pero no cero	Creciente			
D	Constante pero no cero	Cero			
E	Cero	Constante pero no cero			

4) La caja de masa m es liberada desde el reposo en la posición 1 en una curva sin fricción como en la figura. Luego de un tiempo t alcanza la posición 2 bajando una altura h. Siendo v y a la velocidad y aceleración instantáneas en la posición 2

¿Cuál de las siguientes ecuaciones es valida?

a)
$$h = vt$$

b)
$$h = gt^2$$

$$c)d = at^2$$

d)
$$v^2 = 2ad$$

Preguntas 5 y 6

Una tiza es tirada verticalmente y capturada durante el descenso en la misma altura a la que fue tirada. Sabiendo que la posición se mide desde el lugar donde se tiro y que la dirección positiva para la posición, velocidad y aceleración es hacia arriba

5) ¿Cuáles son los signos para la posición, velocidad y aceleración en la parte ascendente de la trayectoria?

	Posición	Velocidad	Aceleración
A	Positivo	Positivo	Positivo
В	Positivo	Positivo	Negativo
C	Positivo	Negativo	Negativo
D	Negativo	Positivo	Negativo
E	Negativo	Negativo	Negativo

6) ¿Cuáles son los signos para la posición, velocidad y aceleración en la parte descendente de la trayectoria?

	Posición	Velocidad	Aceleración	
A	Positivo	Positivo	Positivo	
В	Positivo	Positivo	Negativo	
C	Positivo	Negativo	Negativo	
D	Negativo	Positivo	Negativo	
E	Negativo	Negativo	Negativo	

7) Sabiendo que un bloque de hielo flota en el agua, ¿Cuál es porcentaje del volumen del mismo que se encuentra por encima de la linea de flotacion? ($\sigma_{hielo} = 0.92 \text{ g/cm}^3$)

a) 5%

b) 8%

c) 50%

d) 75%

e) 92%

8) Sabiendo que todos los años multiplos de 4 son bisiestos, que los multiplos de 100 no lo son y que los multiplos de 400 si lo son. ¿Cuántas horas tiene un año?

a) 8755

b) 8760

c) 8766

d) 8771

e) 8775

Problemas 9 y 10

Un tren sale de Buenos Aires hacia Bahia Blanca(600 km) a las 12:00 hs con velocidad constante 80 km/h. Una hora mas tarde sale un automóvil desde Bahia Blanca hacia Buenos Aires con velocidad constante 100 km/h.

9) ¿A que hora llega el tren a Bahia Blanca?

a) 18:00

b) 18:30

c) 19:00

d) 19:30

e) 20:00

10) ¿A que hora y en que distancia de Buenos Aires se encuentran el tren y el automóvil?

	Hora	Distancia
A	19:30	100 km
В	18:12	520 km
C	18:12	416 km
D	15:53	311 km
E	15:53	288 km

Respuestas

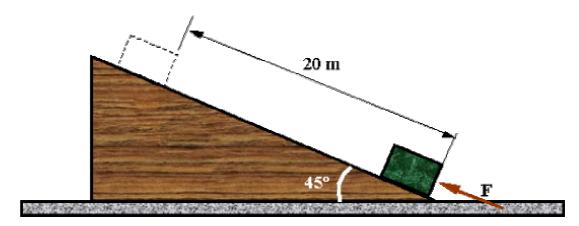
1	2	3	4	5	6	7	8	9	10

Respuestas

1	2	3	4	5	6	7	8	9	10
E	C	D	E	В	C	В	C	D	D

Problema 2

Aterrizaje Suave


Un recipiente contiene dos líquidos que no se mezclan y forman dos capas de alturas a_1 y a_2 . Sus densidades son ρ_1 y ρ_2 respectivamente. Un objeto pequeño y de perfil hidrodinámico, es soltado sobre la superficie de la capa superior. El objeto cae y llega al fondo del recipiente en el preciso momento en que su velocidad es cero. ¿ Cuál será la densidad del objeto? Suponga que la viscosidad de los líquidos es despreciable y que el objeto al tener perfil hidrodinámico no presenta resistencia al moverse.

AYUDA: La energía potencial del objeto se disipa completamente al llegar al fondo con velocidad cero. El trabajo de resistencia solo lo realizan las fuerzas de flotación.

Problema 3

Una fuerza F actúa sobre un bloque de masa 50 kg como se muestra en la figura. El bloque se mueve a una rapidez constante de 10 m/s hacia arriba del plano inclinado una distancia de 20 m. El coeficiente de fricción cinética entre el bloque y el plano inclinado es $\mu=0.2$. Calcular el trabajo efectuado sobre el bloque por:

- a) la fuerza F
- b) la fuerza de fricción
- c) la fuerza gravitatoria

