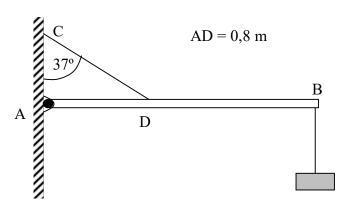
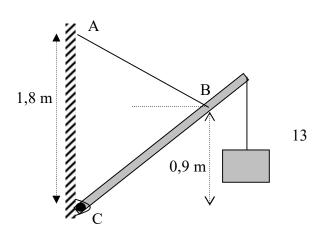

Ficha de actividades para la tercera unidad: Estática, condiciones de equilibrio

Contenidos conceptuales:

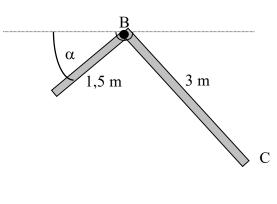

Fuerza, momento de fuerza, equilibrio.

Actividades

1. El bloque del diagrama tiene 20 kg de masa. Calcule la fuerza que experimenta cada una de las cuerdas que lo sujetan.



2. Una barra rígida, de 2 m de largo y 10 kg de masa, soporta en su extremo una carga de 20 kg. Calcule la tensión del cable CD y las magnitudes de las componentes horizontal y vertical de la reacción que el apoyo fijo A ejerce sobre la barra.



- 3. Una escalera de 40 kg de masa y 6 m de longitud está en equilibrio formando con el piso un ángulo de 53°. Despreciando el rozamiento en la pared, calcule las reacciones normales que ejercen el piso y la pared sobre la escalera y la fuerza de fricción en el apoyo sobre el piso.
- 4. Una escalera de 5 m de largo y 20 kg de masa está apoyada contra una pared lisa, formando 30° con la vertical. El coeficiente de rozamiento

estático entre la escalera y el piso es 0,4. Un hombre de 80 kg sube a la escalera. ¿Hasta qué altura se podrá elevar sin que la escalera deslice?

- 5. Calcule la tensión en la cuerda AB y las componentes horizontal y vertical de la reacción en la bisagra C. El sistema está en equilibrio, el peso del puntal es de 700 N, su longitud es 2 m, la masa de la carga suspendida es de 100 kg y la longitud del segmento BC es 1,5 m..
- 6. Una palanca ABC, en ángulo recto, puede girar libremente alrededor del punto B. Sabiendo que en sus extremos A y C hay cargas de 100 Kg y de 70 Kg respectivamente, y que la masa por unidad de longitud de la palanca es de 50 Kg/m, determine el ángulo α que define la posición de equilibrio de la barra.

Respuestas a los problemas propuestos en la ficha 3

- 1. En el primer diagrama, la tensión de la soga vertical es 200 N, la de la soga inclinada a 30° es 121 N y la de la restante es 174 N. En el segundo diagrama la cuerda vertical experimenta una tensión de 200 N, la tensión de la cuerda horizontal es 267 N y la de la restante es 333 N.
- 2. Respuesta: T = 781 N; $\overrightarrow{R}_A = 468,6 N \ \widetilde{t} 324,8 N \ \widetilde{j}$.
- 3. Las reacciones normales de la pared y del piso son 150 N y 400 N respectivamente y la fuerza de fricción es 150 N.
- 4. Respuesta: 3,16 m.
- 5. La tensión de la cuerda es 1500 N y la reacción de la articulación tiene dos componentes: $\vec{R_A} = 1200 \ N \ \breve{i} + 800 \ N \ \breve{j}$.
- 6. El ángulo que define la posición de equilibrio es 25,4°.